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Abstract-The problem of a semi-infinite crack propagating steadily along the interface of a
viscoelastic bimaterial composite is investigated. One of the constituents of the composite is a strip
and the other is a dissimilar half-plane. The viscoelastic behavior of both materials is modeled as a
standard solid. The crack is driven by an arbitrary traveling shear load applied to the crack faces,
producing a state ofantiplane strain (mode 3). The boundary value problem is reduced to a Wiener­
Hopf equation and solved in closed form by means of Cauchy-type integrals. For the specific case
of an exponentially decaying load, the expression for the stress intensity factor is derived and its
behavior as a function ofcrack-tip speed for different material combinations is examined. For some
limiting cases, the solution is seen to coincide with known results. The important problem of an
elastic-viscoelastic composite is also considered.

I. INTRODUCTION

The important technical problem ofinterface crack propagation causing layer delamination
is being studied by many authors. A rather complete study of the problem for elastic
constituents may be found in Hutchinson and Suo (1991), Consideration of mixed mode
interface fracture requires an investigation of not only modes 1 and 2, but also mode 3.
These modes were studied by Jensen et al. (1990) for an elastic thin film which separates
from a substrate composed of a different elastic material. The influence of mode 3 on the
deformation pattern of the decohered thin film was emphasized in that investigation.

When viscoelastic effects are included in the analysis, it seems that only for mode 3
deformation may analytic results be obtained. Several papers have appeared in the literature
for cracks propagating along the interface between two viscoelastic materials. Sills and
Benveniste (1981) determined the stress intensity factor for a crack propagating steadily
between two different viscoelastic half-planes, modeled as Maxwell materials, and driven
by an exponentially decaying load applied to the crack faces. In a later paper, they (Banks­
Sills and Benveniste, 1983) considered the same problem with the materials modeled as
standard solids. Coussy (1987) considered a body of the same geometry but for another
viscoelastic model. He studied transient effects for a suddenly appearing crack with a
uniformly distributed load applied to the crack faces. Ryvkin and Banks-Sills (1993)
obtained the solution for a crack propagating steadily along the interface of an inhomo­
geneous viscoelastic strip for a uniformly distributed load.

The objective of the present paper is to investigate steady, mode 3 crack propagation
between two viscoelastic constituents in which one is a strip and the other is a half-plane.
This problem may be associated with decohesion of a protective coating from a substrate
or with any kind of thin film delamination. The constitutive equations for the two materials
are taken as standard solids. From this model, a Maxwell material, as well as elastic
behavior may be obtained.

As in previous investigations, the formulated boundary value problem is reduced to a
Wiener-Hopf equation by means of the Fourier transform. This equation is viewed as a
Riemann problem with either a continuous or discontinuous coefficient depending upon
the range ofthe crack-tip velocity. A closed form solution is constructed employing Cauchy­
type integrals which enable determination of an expression for the stress intensity factor.
In Section 2, the mathematical formulation of the problem and the analysis are presented
for a general loading and for the specific case of an exponentially decaying load applied to
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the crack faces. The behavior of the stress intensity factor for the specific loading and for
different material combinations is examined analytically and numerically with graphical
results exhibited in Section 3. Specific material combinations including elastic, elastic­
viscoelastic, and viscoelastic composites are considered. For the degenerate case of a crack
propagating parallel to the boundary ofa homogeneous elastic half-plane, a simple formula
for the stress intensity factor is obtained.

2. ANALYSIS

Consider mode 3 delamination ofa viscoelastic strip from a dissimilar viscoelastic half­
plane as a result of steady-state propagation of a semi-infinite crack (Fig. 1). For the
antiplane deformation to be investigated in the fixed coordinate system (x I> x 2, x 3) with
X2 = 0 being the interface, all components ofthe stress strain field will be functions only of
the two coordinates Xl and X2' The only non-zero displacement w(rl(XI>X2, t) is in the Xr

direction. The values of the index r = 1, 2 denote the materials of the strip which occupy
the region 0 ~ X2 ~ h and the half-plane, respectively. The non-vanishing strains are given
by

(1)

with ill = I, 2.
The viscoelastic behavior of both the strip and half-plane is modeled as a standard

solid. For each medium, the constitutive equations for non-zero stresses may be written as

o (rl (0 (rl )O'w3 (rl _ 8w 3 (rl----at +PrO'w3 - 2Jl.r --at +O(r8w3 , (2)

where I/Pr and I/00r are the relaxation and creep times, respectively, Jl.r are the instantaneous
short time shear moduli. The only equation of motion not satisfied identically in each
material is

(3)

where Pr denotes density.
The boundary conditions generating the antiplane strain state consist of restricting the

displacement on the outer strip boundary, namely

(4)

and applying a traveling shear load to the crack faces

material ( I. )
h

Fig. I. Delamination of a viscoelastic strip from a dissimilar viscoelastic half-plane.
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(5)

In eqn (5), (10 is a constant with dimensions of stress, 4J is some known function to be
specified later, and v is the crack-tip velocity. The continuity conditions to be satisfied along
the uncracked interface are

and (6)

To complete the formulation of the boundary value problem, the vanishing of the stresses
far from the crack tip is assumed, so that

(7)

As usual for problems with a uniformly moving crack tip, it is convenient to introduce
a moving Galilean coordinate system (~, '1) whose origin coincides with the crack tip and
axes are parallel to the fixed axes (XJ,X2)' respectively (see Fig. I). Thus

~ = XI -vt, '1 = X2,

and, consequently

o 0 0 0 0 0
OXI = o~' OX2 = 0'1' ot = -vo~'

A Fourier transform in ~ is defined as

(8)

(9)

where s is a complex variable and the inverse transform can be carried out along the real
axis, defined as contour L. The boundary value problem in eqns (1)-(7) is rewritten in
terms of the new coordinate system and (8). The Fourier transform is applied to these
equations. The constitutive eqns (2) for each medium become

and

where

ar~ = -iSil,W(')}
dw(')

at') - j; -- ,
23 - rr d'1

_ ivs+ IX,

Jlr = ivs+ fJ, Jlr

(10)

(II)

are complex shear moduli. The equations of motion (3) transform into

(12)

Substitution of the transformed stresses from eqn (10) into eqn (12) yields the ordinary
differential equations
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dZw(r)
-_ - Z - (r) - ° - 1 2d1Jz Yr W - , r - , ,

Z Z zs-isrl
Yr = ars --.­

S-ISrZ

(13)

(14)

(15)

(16)

The values c; = flr/Pr and c~z = fl~/Pr are the short and long time wave speeds, respectively,
and fl: = flrlY.r/ f3r are the long time shear moduli. Proceeding with the assumption that the
branches of Yr are chosen so that Re (Yr) > 0, it is possible to write the general solution of
(13) for the strip in the form

(17)

and for the half-space in the form

(18)

It may be immediately observed from the transformed boundary conditions (4) and (7)
that A I = A z = 0.

Application of the Wiener-Hopf technique requires definition of "+" and "-"
functions which are assumed to be analytic in upper, 1m (s) ~ 0, and lower, 1m (s) ~ 0,
half-planes, respectively. These functions include the unknown tranform of the crack face
displacement jump

(19)

the transform of the unknown continuous stresses along the uncracked interface

(20)

and the transform of the known crack face tractions

(21)

By substituting (17) and (18) into the transformed continuity conditions (6) in the
moving frame, one can find that

B 1(s) = - ~zYz ~osh-l ~YIh)[jiIYl +jizY~ ltan~ (y1h)] - 1W-}.
Bz(S) = -fllYl[filYI +flzYz tanh (y1h)] W

(22)

Deriving next the expressions for the stress transform at the interface using relations
(10) and (17), on the one hand, and (20) and (21), on the other hand, and eliminating from
the resulting equation B 1(s) by (22), leads to the Wiener-Hopf equation given by
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(23)

(24)

It is worthwhile comparing the coefficient G(s) with the corresponding coefficients for
the problem of a crack propagating between two viscoelastic half-planes (Banks-Sills and
Benveniste, 1983) and two bounded strips (Ryvkin and Banks-Sills, 1993). The coefficient
G(s) is found to be a mixture of the coefficients for the two problems mentioned, Le. it
contains the meromorphic "strip function" tanh (y1h)/filYI and "half plane function"
1/fi2Y2 which has branch points.

Solution of (23) requires separation of G(s) into two functions G+ (s) and G- (s). This
may be accomplished by considering the homogeneous equation

(25)

Assuming that

(26)

and solving two Riemann problems

(27)

where i = 1,2, one can find the unknown functions G± (s) as

(28)

The functions G;(s) must be chosen so that it is possible to factor G 1(s) by inspection and
G2 (s) using a Cauchy-type integral, given by

{Ii In G 2 (t) }Gr(s) = exp -2. dt .
1tl L t-s

(29)

This representation is valid only if G 2(s) satisfies on L the following conditions [see for
example Gakhov (1966)]:

(a) G2(s) is Holder continuous;
(b) lim G2(s) = 1 ;

Re(s) ... ±oo

(c) the index of G 2 (s) on L is zero.

It will be shown later that the behavior of the function G(s) and therefore the form of
the functions Gi(s) depends upon the relation between the crack-tip speed v and the long
time wave speed of the half-plane material 4 It may be noted that except for verification
of condition (c) as will be pointed out, special treatment of G(s) is not required when v is
either less than or greater than cT. Thus, two cases are distinguished, namely 0 ~ v ~ c1
and c1 ~ v ~ c where c = min (Cl' C2)' It is convenient to begin with the case of large
velocities.

Case (i) c1 ~ v ~ c
To factor the function G(s) as in (26), it is useful to write

G(s) = -SQ-I(S),

where

(30)
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(31)

(32)

and S21 and S22 are given in (15). In order to fulfill the assumption that the Re (Y2) > 0, the
branch cuts for the square roots are chosen along the imaginary axis (is21, ia::;) and (is22, ia::;)
[see Fig. 2(a)].

Following Kamisheva et al. (1982), the behavior ofG2(s) is adjusted in order to satisfy
condition (b) as

where

so that

Q(a::;) •
G2(s) = Q(s) coth n(hs+t/4),

Q(a::;) = lim Q(s),
Re(s) --+ €X>

(33)

(34)

It should be noted next that the value of S22 is always positive. The sign of S21 depends
on the ratio vlc1; in the case under consideration, S21 <0. Therefore, for the branch cuts
chosen, the ratio of the square roots in the expression for Y2 will have a jump for all points

1m(s)

Re(s)

(Q)

Im (s)

Re(s)

(b)
Fig. 2. Branch cuts in the s-plane for the functior-.s (S-S2j) 1/2, j = 1,2 for (a) c~ ~ v ~ c, and

(b) 0 ~ v < 4
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s in the interval (is21 , is22 ) and, in particular at s = O. Because of the multiplicative function
sgn [Re (s)], "12 itself, as well as Q(s), will be continuous at these points, including s = O.
Taking this into account, it is clear that G2 (s) is also continuous at s = 0 so that the
continuity condition (a) is satisfied. Fulfillment of condition (b) is seen immediately from
(31)-(33). To check satisfaction of condition (c), the techniques suggested by Ryvkin and
Banks-Sills (1993) may be employed. If cT < c!, then verification of this condition is carried
out numerically during the calculation of the stress intensity factor. If cT > c!, for
c! ~ v ~ ct condition (c) is seen to be valid analytically; for cT < v ~ c, numerically.

In order to factor G 1(s) which can be derived from (26) and (33), the identity

r(l +iz)r(l-iz)
zcoth(nz) = re .we .)

2+IZ 2- IZ

is employed. The functions Gr(s), analytic in the corresponding half-planes, are found to
be

and (35)

In reference to G I (s), the point s = 0 has been assumed to be situated in the upper half­
plane.

Thus, the solution of the homogeneous equation (25) is given by (28), (29) and (31)­
(35). Solution of the inhomogeneous equation (23) is now straightforward. Using the
factorization in (25), eqn (23) may be rearranged as

where

<I>+(s)-(}>-(s) = g(s), seL, (36)

(37)

Equation (36) is a routine problem of determination of a sectionally analytic function
in accordance with a given jump. Proceeding with the assumption that the loading function
4>(~) is sufficiently smooth and decreases so that g(s) is Holder continuous and tends to
zero as Re (s) becomes infinite, one can write

(}>± (s) = ~ rg(t) dt.
2m It-s (38)

In order to write the solution in the form shown in (38), the supplementary condition
<I>± (00) = 0 is required. By considering the usual physical assumptions concerning the
asymptotic behavior of the stress-strain field and the displacement jump near the crack tip,
one may conclude that H+ (s) = 0 (s- 1/2) and W- (s) = 0 (s- 3/2) as lsi -+ 00. Further,
G+ (s) = 0(SI /2) and G- (s) = 0(S-I/2) as lsi -+ 00, so that from (37) this condition is
verified. Thus, the general solution for case (i) is constructed. By applying the inverse
Fourier transform, it is possible to obtain all components of the stress-strain field.

To examine specific results, a particular applied load is chosen for consideration,
namely

$AS 31:4-"
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¢(~) = exp (t), (39)

where I is a length parameter describing the loading decay rate. For such loading, the half
Fourier transform integral (21) is given by

H-()=~s 'b'S-l
(40)

where b = 1/1. The inhomogeneous equation (23) may be factored more simply than as
given in (38). Indeed, employing (40), eqn (23) can be rewritten as

where

and

H+(s) + W-(s) _
G+(s) +R (s) = G-(s) -R (s), seL,

+ iO'o [1 1 J}R (s) = s-ib G+(s) - G+(ib) .

_ iO' 0 1
R (s) = (s-ib) G+ (ib)

(41)

(42)

Functions on the right- and left-hand sides of (41) are analytic in upper and lower
half-planes, respectively, and equal on contour L. Hence, they represent an analytical
function in the entire s-plane. As mentioned previously, the behavior of the stresses and
displacement jump near the crack tip, imply the behavior of H+ (s) and W- (s) as lsi -+ 00.

Employing the generalized Liouville theorem, one can find the unknown functions as

(43)

and

(44)

In order to determine the stress intensity factor, which is of prime importance, the
asymptotic behavior of the stresses 0'23(~' 0) as ~ -+ 0+ must be evaluated. From (28), (29),
(35), (42) and (43), the stress transform H+ (s) is found to behave as

(45)

Applying Abelian theorems (Noble, 1958), one obtains

(46)

In order to obtain a convenient expression for G + (ib), the conjugate property of the
function G2(s) for real s, namely

'P( -'t') = qI('t'), 't' = Re (s) (47)

is employed. After some transformations including use of integral identities in which
Gamma functions appear, the expression for G+ (ib) is found to be
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G+(ib) = ijbhexp(D),

where

D =! roo 1m [In G~(t)Jdt
7tJo t-lb

and

Recall, b = 1/1.
The non-dimensional stress intensity factor is defined as

559

(48)

(49)

(50)

(51)

where K o = (Joft is the stress intensity factor for a crack propagating steadily in an elastic
inhomogeneous infinite plane under the same loading (39) as may be found in Atkinson
(1977). From (46), (48) and (51)

Kv• = exp (-D), (52)

which yields the final expression of the viscoelastic stress intensity factor for c~ :E; v :E; c.
Note that the integral in (49) is evaluated numerically. The integrand in (49) is not singular;
for t -+ 00 it decays algebraically as O(t-2). Thus, there are no serious difficulties in
performing the integration.

Case (il) 0 :E; V :E; c~
For these values of v, S21 in (32) is positive causing the branch point to move into the

upper half-plane, 1m (s) > O. The branch cuts of the square roots in 12 are chosen as in case
(i) which may be seen in Fig. 2(b). Hence, 12 and therefore, G2(s) in (33) are discontinuous
for points on the imaginary axis in the neighborhood of s = 0; so that, condition (a) is not
satisfied. Following Gakhov (1966) to obtain the solution of the Riemann problem (27) for
i = 2 with a discontinuous coefficient, auxiliary functions w± (s) which are analytic in
corresponding half-planes must be employed. For the problem under consideration, they
may be defined by

(53)

The branch cuts for the square roots are taken as the parts of the imaginary axis
(O,ioo), (-i/h,ioo) and (i/h,ioo), respectively. Similar auxiliary functions were used by
Walton (1982) for the problem of a crack propagating steadily in a homogeneous infinite
viscoelastic body. The ratio of these functions

(54)

will be discontinuous for SE (-i/h, i/h). Applying this function to neutralize the dis­
continuity of the expression on the right-hand side of (33) leads to

Q(oo) .
G 2 (s) = O(s) Q(s) coth 7t(hs+1/4). (55)

By repeating the analysis carried out in the previous case, it is possible to show that G2 (s)
as chosen, satisfies conditions (a)-(c). Note that analytical verification ofcondition (c) may
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be carried out when 0 ~ v ~ cT. Thus, the solution of (27) for i = 2 can be found by (29).
Corresponding to G2(s) as chosen, the function G 1(s) may be factored by inspection. Using
(26), (35) and (53)-(55), yields

Gt(s) = (hS+ ~)~~i=~~:~ w+(s)}.
and (56)

G-() = _ Q(oo) r(~+ihs) _()
1 S hs rO+ihs) w s

From here, the derivation of the general solution for an arbitrary load given in (5) is
the same as that for case (i). The solution is given in (37) and (38) with G+ (s) and G- (s)
taken from (28), (29), (55) and (56).

For the specific load given in (39), the factorization is again simplified as in (41). The
expression for G+ (ib) required in (46) for the stresses is obtained from the new expressions
for Gt and Gt. These are substituted into (28) and manipulated, taking note that

lao [In O(t)J = (bh+ 1)1/2
1m 'b dt bh 'o t-1

so that (48)-(50) remain valid. Therefore, the expression for the non-dimensional visco­
elastic stress intensity factor in (52) is applicable for all possible values of the crack-tip
velocity 0 ~ v ~ c.

It may be noted that there is an alternate method for determining the stress intensity
factor in (52). Following Ryvkin and Banks-Sills (1993), the problem of two bonded
viscoelastic strips may be solved with an exponentially decaying load applied to the crack
faces. Recall that their solution for this geometry was for a uniformly distributed applied
load which may not be employed for a body constructed from a half-plane. At first glance,
it may seem that letting one of the strip thicknesses approach infinity in the final expression
for the stress intensity factor will lead to a solution for the problem at hand. But, some of
the meromorphic functions appearing in this expression will now contain branch points.
Since it is not clear if it is possible to employ this limiting process successfully, the authors
preferred to solve the problem directly.

3. RESULTS

The obtained nondimensional stress intensity factor can be viewed as a function of the
independent non-dimensional parameters of the problem, namely

(57)

where c = min (C., C2)' In this section, the behavior of the stress intensity factor as a
function ofthe relative crack-tip velocity vic is investigated for various material parameter
combinations. Results are presented in graphical form in Figs 3-7. To better understand
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---I
------- 0.5

1.0
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0.8

o 0.2 0.4 0.6 0.8 1.0 vic,

Fig. 3. Graph of the non-dimensional stress intensity factor Ke vs the non-dimensional crack-tip
velocity vic, for inhomogeneous elastic bodies with hll = I and IldJl2 = 2.
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Fig. 4. Graph of the non-dimensional stress intensity factor K. vs the non-dimensional crack-tip
velocity vic for a homogeneous elastic body for different ratios of the strip thickness h vs the loading

length parameter I.
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Fig. 5. Graph of the non-dimensional stress intensity factor K.. vs the non-dimensional crack-tip
velocity vic for a homogeneous viscoelastic body with alfJ =0.2 and fJhlc = 1.

0.2

vIc

o 0.2 0.4 0.6 0.8 LO

Fig. 6. Graph of the non-dimensional stress intensity factor K.. vs the non-dimensional crack­
tip velocity vic for two viscoelastic composites and two viscoelastic homogeneous bodies with
cllcz = Jl.lJlz = fJtlfJz = I, fJ1hlci = I, and hll = 1. Other parameters are given in the text. The

arrows along the abscissa denote critical values of c*lc.
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C~/C

!

I.0t-- L.-_""'

0.2

o 0.2 0.4 0.6 0.8 1.0 Vic

Fig. 7. Graph of the non-dimensional stress intensity factor Kve vs the non-dimensional crack-tip
velocity vic for two elastic-viscoelastic composites with cdc2 = JldJl2 = I and hll = 1. The visco­
elastic material parameters are rY.,IP, = 0.25 and P,hlc, = 1. Also shown are two homogeneous

bodies, one elastic and one viscoelastic.

the viscoelastic behavior, it is useful to consider first the degenerate case of two elastic
materials. As may be seen from eqns (2) and (11), elimination of viscoelastic effects for
both materials may be achieved by setting (Xr = Pr (r = 1,2). Substituting this into the
solution in (52), one obtains the stress intensity factor for a crack propagating steadily
between two elastic materials as

~ { [00 In Qo(x) }
K. = exp Jo x2 + I dx , (58)

where

(59)

and ai are defined in eqn (16). It may be observed that 0 < Qo(x) < 1, so that the integrand
in (2) and thus, the integral itself, are negative. Hence, Ke < I for any set of parameters.
Note that intuitively it seems clear that the non-dimensional stress intensity factor obtained
here is less than that determined for a crack propagating steadily between two dissimilar
elastic half-planes. Recall that the solution to the latter problem is unity (Atkinson, 1977).
The limiting value of the non-dimensional stress intensity factor Keo for v = 0 is given by
(58) and (59) with at = a2 = 1, so that

(60)

For v = c, the value of the non-dimensional stress intensity factor Kec is found to be

(61)

Recall that the strip is material 1and the half-plane is material 2. Indeed, this value depends
upon the ratio of the shear wave speeds of the constituents. If the limiting value of the
crack-tip velocity v is the strip wave speed c\> then the non-dimensional stress intensity
factor behaves as that found for a crack propagating steadily in an inhomogeneous elastic
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strip (Matczynski, 1974) which is zero. If, on the other hand, the limiting value is the half­
plane wave speed C2, then the non-dimensional stress intensity factor is unity, which is that
found for a crack propagating steadily between two elastic half-planes (Atkinson, 1977).
For CI = C2, the non-dimensional stress intensity factor has neither behavior and tends to
a constant between zero and unity. This constant depends upon the elastic modulus ratio
J1.11J1.2' Results obtained for the three wave speed combinations are depicted in Fig. 3. For
all three cases hi! = I and J1.dJ1.2 = 2. From (58) and (60) it may be seen that the initial
values of the non-dimensional stress intensity factor, when v = 0, are identical. For v 2
in accordance with (61), the Ke values are zero when C\ < C2, unity when C\ > C2 and ..;2/3
when Cl = C2'

It is interesting to consider now the important subcase of a crack propagating steadily
a distance h from the boundary in a homogeneous elastic material. Setting al = a2 and
J1.1 = J1.z in (58) and (59) and carrying out the integration, one may obtain a closed form
expression for the non-dimensional stress intensity factor, namely

(62)

To the authors' knowledge, this result does not appear in the literature. Graphical results
for three non-dimensional thicknesses hi! = 0.1, I and 10 are exhibited in Fig. 4. From (62)
as well as Fig. 4, it may be seen that as the crack-tip speed v changes from zero to c, the
non-dimensional stress intensity factor decays monotonically from its initial value Keo to
1/)2. This latter value may also be determined from (61) with J1.dJ1.z = 1. As hi! increases,
the non-dimensional stress intensity factor increases with its value approaching unity for
o~ v < c. This may be expected since the limiting case h -+ 00 corresponds to the problem
of a crack propagating steadily at the interface of an infinite homogeneous elastic plane.

Returning to consider viscoelastic materials, the limiting values of the non-dimensional
stress intensity factor Kvo and Kve for crack-tip velocities approaching zero and c, respec­
tively, will be determined first. Following Ryvkin and Banks-Sills (1993), Kvo is determined
by means of the correspondence principle. The elastic modulus ratio J1.dJ1.2 is replaced in
the expressions for the elastic stress intensity factor in (58) and (60) by the ratio of the long
time material moduli J1.TIJ1.~ so that

(63)

In order to obtain the value Kvc as v -+ C, it is possible to rewrite the integral in (49) in the
form

(64)

where G 3(t) is given in (50). For v -+ C according to (14)-(16), (31), (32) and (34), the
modulus of the function G3 (t) becomes unbounded; so that the integral in (64) diverges,
approaching plus infinity. Hence, from (52), Kvc = O.

To proceed, it is convenient to consider first the homogeneous case where the materials
of the strip and half-plane are identical, namely CI = C2 = C, OCI = OCz = OC, {3\ = {32 = {3,
J1.1 = J1.z = J1.. Three curves are exhibited in Fig. 5 for the non-dimensional parameter
hi! = 0.1, I and 10. The remaining parameters in (57) are chosen to be {3hlc = I and
ocl{3 = 0.2 for all curves. Consequently, the relative long time wave speed in this homo­
geneous body is c*lc = J02. It may be observed in the figure that the non-dimensional
stress intensity factor does not change substantially for 0 ~ v ~ c*. As discussed, from the
correspondence principle, the initial value K"o coincides with the corresponding elastic one
for the homogeneous case given in (62) with al = I. This value depends only upon the non­
dimensional parameter hi! and as in the elastic case increases monotonically from 1/)2 to
unity when hi! varies from zero to infinity. For c* ~ v ~ c, all three curves decrease to zero
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with the slope changing according to the value of hll or alternatively, the non-dimensional
parameter A* = ciPI. It is worthwhile comparing these curves with those presented by
Banks-Sills and Benveniste (1983) in their Fig. 3 for the non-dimensional stress intensity
factor of a crack propagating steadily in a homogeneous finite viscoelastic plane subjected
to the same applied loading as employed in this study. It may be noted that the behavior
of the curves in their investigation for c* < v < c is controlled also by A*. If this parameter
is calculated here, it is found to assume the same values as in their study, namely 0.1, 1 and
10. Indeed, it has been observed in Banks-Sills and Benveniste (1983) and Atkinson and
Popelar (1979) that typically for cracks propagating in standard solids, the behavior of the
stress intensity factor changes at v = c*.

Next, the general problem of dissimilar viscoelastic materials is addressed. It is useful
first to obtain analytically the solution for the limiting case hll-+ 00 for 0 < v < c* where
c* = min (cT, cn. Writing G3 (t) from (50) as a function of non-dimensional parameters
and taking the limit, leads to

2

G3(t) = Q-I(oo) L ,u;la;I(t-isr2)1/2(t-isrl)-1/2,
r= I

(65)

where the branch cuts corresponding to SII and S12 are prescribed in a manner similar to
S21 and S22 as in Fig. 2. The integral D is rewritten in the form

D = ~foo In G:(t) dt
211: -00 t-Ib

(66)

and the integrand is analytically continued into the s-plane. It may be noted that for
o< v < c*, all singularities and branch cuts of the integrand are situated in the upper half
plane, namely 1m (s) > O. Taking into account thatthe integrand behaves as 0 (t- 2) forlarge
t and employing the Cauchy theorem yields D = O. Consequently for crack-tip velocities in
the range mentioned, the non-dimensional stress intensity factor Kve is equal to unity,
coinciding with that found by Banks-Sills and Benveniste (1983).

The behavior of two arbitrary viscoelastic composites is presented in Fig. 6 and
compared to that of two corresponding homogeneous bodies. In one case (dotted line),
the non-dimensional parameters are taken as cdc2 = fldfl2 = PdP2 = hll = Plhici = 1,
adPI = 0.04, ada2 = 0.16 and consequently the non-dimensional long time wave speed of
the strip cT/c = 0.2 is less than that of the half-plane, with c!/c = 0.5. The second curve
(solid line) depicts the case for which the materials of the strip and half-plane are exchanged.
For comparison, two curve~ for corresponding homogeneous viscoelastic materials are
exhibited. Since flTlfl! is unity for each of these homogeneous bodies, their initial values.
Kvo , coincide as may be seen from (63). The initial value of Kvo for the composite bodies is
determined from (58), (60) and (63). For the given thickness hll, this value increases as the
long time modulus ratio increases varying within the limits

(
h 1)

~
r -+-

h 11:1 2 A

11:1 (h ) ~ Kvo ~ 1.
r -+1

11:1

(67)

The upper bound is expected since it represents the solution of a crack propagating steadily
in a homogeneous viscoelastic body. Then for v = 0, the non-dimensional stress intensity
factor can be either less than or greater than its corresponding homogeneous value as seen
in Fig. 6. If, on the other hand, flU fl! is fixed, it may be easily shown that Kvo increases as
a function of hiland satisfies the relation
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(68)

Referring to Fig. 6, it may be observed that for each composite body, the difference between
its curve and that of the homogeneous viscoelastic bodies decreases monotonically beginning
from the initial value Kvo . For those curves which approach one another as v increases, the
material in the half-plane of the composite is the same as that of the homogeneous body.
It is interesting to note further that the jump in the slope of the curves takes place only
when the crack-tip velocity v reaches the long time wave speed c! associated with the half­
plane material; there is no visible change in the vicinity of the long time wave speed of the
strip material cT. Such behavior of the non-dimensional stress intensity factor of a crack
propagating steadily between two standard solids, in which one is a strip and the other a
half-space, contrasts with the results determined by Banks-Sills and Benveniste (1983) in
which both constituents of the composite were half-planes. In their investigation, at each
long time wave speed, a discontinuous slope was observed. On the other hand, it was
observed by Ryvkin and Banks-Sills (1993) for a crack propagating steadily at the interface
of two bonded strips that the slope of the stress intensity factor is continuous at both long
time wave speeds. However, the value of Kve changes precipitously at the long time wave
speed of the material which is substantially thicker.

In Fig. 7 results are presented for two elastic-viscoelastic composites, a homogeneous
elastic and a homogeneous viscoelastic body of the same constituents. The parameters for
the viscoelastic media are taken to be the same as in Fig. 6 for the material whose relative
long time wave speed is 0.5. The shear wave speed and modulus of the elastic media are the
same as the short time wave speed and instantaneous shear modulus of the viscoelastic
material. The solid curve corresponds to the case in which the upper material is elastic and
the lower viscoelastic; for the dotted curve the materials are reversed. The curves for the
homogeneous materials are reproduced from Figs 4 and 6. For the composite in which the
half-plane is viscoelastic, the behavior of the non-dimensional stress intensity factor is
essentially the same as that of the homogeneous viscoelastic body or the composite visco­
elastic bodies in Fig. 6. It appears that the general behavior is not affected by the elastic
strip. For the composite in which the half-plane is elastic and the strip is viscoelastic, the
behavior for all v except in a small vicinity of the point v = c (where c = Cl = C2) is similar
to that of the homogeneous elastic material. This may be verified by comparing to the curve
in this graph for the latter material or referring to Fig. 4. When the crack-tip velocity v = c,
the value of Kvc is found to be 1/.J2 as for a homogeneous elastic body. The value of Kv•

precipitously approaches this value. Further, the stress intensity factor for the composite
in which the half-plane is elastic does not decrease monotonically to its value at v = c as
for the homogeneous elastic body. Relations (67) and (68) for v = 0 remain valid; for the
elastic material Jl! is replaced by Jl2' It may be shown for a composite in which the half­
plane is elastic and the strip viscoelastic but the instantaneous elastic moduli and short time
wave speeds do not coincide (i.e. Jll # Jl2 and CI # C2) that the limiting value of Kvc for
v = C is the same as that of an inhomogeneous elastic system given by (61).

4. CONCLUSIONS

The closed form expression of the stress intensity factor for a semi-infinite crack
propagating steadily along the interface of a viscoelastic strip bonded to a dissimilar
viscoelastic half-plane has been determined. The viscoelastic constitutive law was that of a
standard solid. The behavior of the stress intensity factor as a function of the crack-tip
velocity for different material parameter combinations was examined.

First some comments for a viscoelastic composite, Le. one in which both constituents
are standard solids. The limiting value of the stress intensity factor for a standing crack,
i.e. when the crack-tip velocity is zero, depended strongly upon the ratio of the strip
thickness vs the decay length of the applied load and the ratio of the long time shear moduli
of the constituents. This limiting value is always less than that of the corresponding problem
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for the infinite homogeneous or inhomogeneous elastic plane; it may be recalled that this
value is identical in both cases and does not depend upon the material properties. As the
crack-tip velocity increases, the influence of the strip material decreases. The stress intensity
factor tends to that of a homogeneous viscoelastic body of the same geometry possessing
the properties associated with the material of the half-plane. Consequently, for this geometry
and loading the viscoelastic behavior of the homogeneous body may be said to qualitatively
describe that of the viscoelastic composite. This tendency of the thicker layer to dominate
the viscoelastic composite fracture behavior was noted by Ryvkin and Banks-Sills (1993)
for the inhomogeneous strip problem. Consideration of an elastic-viscoelastic composite
in which the strip is elastic and the half-plane is viscoelastic confirms this phenomenon;
namely, typical viscoelastic behavior emerges. On the other hand, when the strip is visco­
elastic and the half-plane is elastic, the stress intensity factor tends to behave like that of
the corresponding homogeneous elastic problem.
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